Nature is topological: it plays cat's cradle

From tangles of strands to elementary particles,
wave functions, gauge groups and the standard model, as well as to space, curvature and general relativity

Christoph Schiller, April 2024

The State of Physics: 9 Lines Describe Nature

Quantum of Action
\otimes Physics in 9 lines

* Dirac's trick
* Spin 1/2
* Spin animation
* Fermions
* Fermion animation
* Dirac's letter
* Fundamental principle

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

(1)	$\mathrm{d} W=0$	Action $W=\int L \mathrm{~d} t$ is minimized in local motion. The other lines fix the two fundamental Lagrangians L.
(2)	$\boldsymbol{v} \leqslant \boldsymbol{c}$	Local energy speed v is limited by the speed of light c. This implies special relativity and restricts the possible Lagrangians.
(3)	$F \leqslant c^{4} / 4 G$	Local force F is limited by c and by the gravitational constant G. This implies general relativity and fixes its Lagrangian.
(4)	$\boldsymbol{W} \geqslant \boldsymbol{\hbar}$	Action W is never smaller than the quantum of action \hbar. This implies quantum theory and restricts the possible Lagrangians.
(5)	$S \geqslant k \ln 2$	Entropy S is never smaller than $\ln 2$ times the Boltzmann constant k. This implies thermodynamics.
(6)	U(1)	is the gauge group of the electromagnetic interaction. It yields its Lagrangian.
(7)	SU(3) and broken SU(2)	are the gauge groups of the two nuclear interactions, yielding their Lagrangians.
(8)	18 elementary particles	- gauge bosons, the Higgs boson, quarks, leptons, and the undetected graviton - with all their quantum numbers, make up everything in nature and, with their interactions, fix the standard model Lagrangian.
(9)	Finally, 27 numbers	- dimensions, cosmological constant, coupling constants, particle mass ratios, mixings and phases - complete the two fundamental Lagrangians. They determine all observations and all colours.

(Link to details and to a paper that summarizes about half a million publications in the past 50 years.)
Lines 6, 7, 8 and 9 need explanations. This talk explains lines 6, 7 and 8.

Dirac's Lecture Trick - According to Penrose

Quantum of Action

* Physics in 9 lines
* Dirac's trick
* Spin 1/2
* Spin animation
* Fermions
* Fermion animation
* Dirac's letter
* Fundamental principle

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

R. Penrose (Dirac's student) \& W. Rindler, Spinors and space-time, vol. I (1984).

The scissors represent a spin $1 / 2$ fermion.
The chair represents the cosmological horizon.
Only a (scissor) rotation by 4π leads back to the original situation. 2π does not.
Is every particle tethered (attached) to the cosmological horizon? Yes.

Strands and Belts Explain Spin 1/2

Quantum of Action

* Physics in 9 lines
* Dirac's trick
* Spin 1/2
* Spin animation
* Fermions
* Fermion animation
* Dirac's letter
* Fundamental principle

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material
Dirac's belt trick or string trick:
Double tethered particle rotation is no rotation.

Core/particle rotation by 4π is equivalent to no rotation, for 2 or more strands.

Spin Is Rotation

Quantum of Action

* Physics in 9 lines
* Dirac's trick
* Spin 1/2
* Spin animation
* Fermions
* Fermion animation
* Dirac's letter
* Fundamental principle

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

The cubic centre represents a lepton tangle core.
As illustrated below, leptons have six tethers.
A spinning particle is a rotating tangle core.
Dirac's trick works with any number of tethers equal or larger than 3.

Strands and Belts Explain Fermions

The fermion trick: Double tethered particle exchange is no exchange.
The trick also works if some or all the strands connect one tangle core to the other core.

Quantum of Action

* Physics in 9 lines
* Dirac's trick
* Spin 1/2
* Spin animation
\& Fermions
* Fermion animation
* Dirac's letter
* Fundamental principle

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

Double exchange is no exchange.
The Dirac trick yields the fermion trick.

Fermion Behaviour Allows Orbiting Particles

Quantum of Action

* Physics in 9 lines
* Dirac's trick
* Spin 1/2
* Spin animation
* Fermions
\otimes Fermion animation
* Dirac's letter
* Fundamental principle

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

© Antonio Martos

The fermion trick works for any number of tethers.
Spin $1 / 2$ particles are fermions. This is (half) the spin-statistics theorem.

Paul Dirac's Letter to Martin Gardner

Quantum of Action

* Physics in 9 lines
* Dirac's trick
* Spin 1/2
* Spin animation
* Fermions
* Fermion animation
* Dirac's letter
* Fundamental principle

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

Dear Mr. Gardner:
I am sorry I was too busy to answer your letter earlier. I first thought of the problem of the strings about 1929. I used it to illustrate a property of rotations, that two rotations of a body about an axis can be continuously deformed, through a set of motions which each end up with the original position, into no motion at all.

It is a consequence of this property of rotations that a spinning body can have half a quantum of angular momentum, but cannot have any other fraction of a quantum.

Yours sincerely
P.A.M. Dirac

M. Gardner, Riddles of the Sphinx and Other Mathematical Puzzle Tales (1987), page 47.

Rotations of tethered particles produce crossing switches.
A crossing switch is a change of overpass and underpass:

Therefore, crossing switches yield Planck's quantum of action \hbar. (L. Kauffman, 1987)

Crossing Switches Define Planck's \hbar

The fundamental, Planck-scale principle of the strand tangle model

Quantum of Action

* Physics in 9 lines
* Dirac's trick
* Spin 1/2
* Spin animation
* Fermions
* Fermion animation
* Dirac's letter
\& Fundamental
principle
Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

Strands have Planck radius. Strands are unobservable, impenetrable and featureless: no mass, no tension, no torsion, no branches, no fixed length, no ends. A crossings is the region of the smallest distance between two strands. Every event is a crossing switch characterized by \hbar.
All observables are defined and measured in terms of crossing switches.
Thesis: This fundamental principle implies all of physics.
The principle implies general relativity (via $F \leqslant c^{4} / 4 G$) and the standard model, with the three gauge groups and the known particles. And not more.
(Link to details and publications.)

Rational 3d Tangles Are Special

Wave Functions

\star Rational 3d tangles

* Elementary
fermions
* Wave functions
* Spinning electron

Gauge interactions
Gravitation
Conclusion
Bonus Material

Rational (3d) tangles - or (3d) braids

Knotted tangles

Only rational 3d tangles reproduce particle reactions and transformations.
In the strand model, particles are rational 3d tangles.

Elementary Fermions Are Rational 3d Tangles

Quarks - `tetrahedral' tangles made of two strands with four tethers (only simplest family members)
Parity $P=+1$, Baryon number $B=+1 / 3$, Spin $S=1 / 2$
Charge $Q=-1 / 3$

Quantum of Action

Wave Functions

* Rational 3d tangles

* Elementary

* Wave functions
* Spinning electron

Gauge interactions
Gravitation
Conclusion
Bonus Material
d quark
tether in
paper plane

Charge $Q=+2 / 3$

Leptons - `cubic' tangles made of three strands along cordinate axes (only simplest family members)

‘Elementary’ means 1 to 3 strands.
'Fermion' means localizable tangle with 2 or more strands.

These simplest tangles reproduce all quantum numbers.

No additional elementary fermions are possible.

No other explanation of the particle spectrum exists.
(Pedagogical link.)

Wave Functions Are Crossing Densities

Quantum of Action
Wave Functions

* Rational 3d tangles
* Elementary
fermions
* Wave functions
* Spinning electron

Gauge interactions
Gravitation
Conclusion
Bonus Material
The strand tangle model for wave functions

Tangles are skeletons of wave functions.

Tangles follow the free Dirac equation. (Battey-Pratt \& Racey, 1980.)

Crossings have amplitudes (inverse distance) and phases.
Crossing densities of fluctuating tangles are wave functions: they yield Hilbert spaces, interference, decoherence, collapse, and entanglement. (Pedagogical link.)
Dirac's equation is the infinitesimal version of Dirac's trick.

The Spinning Electron (slightly incorrect)

Quantum of Action

Wave Functions

* Rational 3d tangles
* Elementary
fermions
* Wave functions
\star Spinning electron
Gauge interactions
Gravitation
Conclusion
Bonus Material

Rotation details depend on the speed: mass arises.

Mass calculation requires estimating the number of Dirac tricks per time. A challenge!

In any case, the masses of elementary particles are small: $m \ll m_{\mathrm{Pl}}$.

Interactions Are Tangle Core Deformations

Quantum of Action
Wave Functions
Gauge interactions
$\$$ Interactions
$\$$ Reidemeister
moves 1
$\%$ Reidemeister
\quad moves 2
$\$ \mathrm{U}(1)$
$\$ \mathrm{SU}(2)$
$\$ \mathrm{SU}(3)$
$\$$ Gell-Mann matrices
$\$$ Elementary
bosons
Gravitation

Conclusion
Bonus Material

Free propagating particles are cores that rotate:

Core rotation axis \rightarrow spin axis
Core orientation \rightarrow phase of wave function
Tether deformations for rigid cores \rightarrow space-time symmetries

Interacting fermions are cores being deformed:

Core deformations change the phase \rightarrow interactions
Freedom in the definition of phase \rightarrow freedom of gauge
Surprise: All observable deformations can be built from 3 basic types.

Animated Reidemeister Moves

Quantum of Action
Wave Functions
Gauge interactions

* Interactions
* Reidemeister
moves 1
* Reidemeister
moves 2
* U(1)
* SU(2)
* SU(3)
* Gell-Mann matrices
* Elementary
bosons
Gravitation
Conclusion
Bonus Material

Double click.

Reidemeister moves are related to crossing switches.
Reidemeister moves in tangles cores are thus physically observable.
Reidemeister moves are the only physically observable deformations.

Reidemeister Moves Classify Interactions

Wave Functions
Gauge interactions

* Interactions
* Reidemeister
moves 1
* Reidemeister
moves 2
* U(1)
* SU(2)
* SU(3)
* Gell-Mann matrices
* Elementary
bosons
Gravitation
Conclusion
Bonus Material

Every tangle core deformation is built from three basic types: (Reidemeister 1926)

Twists generate $\mathbf{U}(\mathbf{1})$, pokes generate $\mathbf{S U (2)}$, parity violation and symmetry breaking, while slides generate SU(3). (Schiller 2009, 2019, 2024 link.)

Gauge interactions are (statistical) crossing transfers:

Twists Generate Local U(1)

The twist, or first Reidemeister move, is related to a crossing switch:
Quantum of Action

Wave Functions
Gauge interactions

* Interactions
* Reidemeister moves 1
* Reidemeister
moves 2
* SU(2)
* SU(3)
* Gell-Mann matrices
* Elementary
bosons
Gravitation
Conclusion
Bonus Material

Twists, performed by rotating the encircled segment, are thus observable.
A double twist of the encircled segment can be rearranged to an untwisted strand, keeping the encircled segment fixed in space: no twist:

In a fermion, the twist around a given axis thus generates a local $\mathrm{U}(1)$ Lie group.
Twists rotate the dotted circle by π. Generalized twists rotate the dotted circle by arbitrary angles. They form the local Lie group $\mathrm{U}(1)$. Rotating twists also yield a model for the photon. (More later on.)

Pokes Generate SU(2) via the Belt Trick

Wave Functions

Gauge interactions

* Interactions
* Reidemeister moves 1
* Reidemeister moves 2
* U(1)
*SU(2)
*SU(3)
* Gell-Mann matrices
* Elementary
bosons
Gravitation
Conclusion
Bonus Material

The poke, or second Reidemeister move, on pairs of strands generates an $\operatorname{SU}(2)$ Lie group, because the three rotations by π generate the algebra of $S U(2)$:

Pokes, like belts, yield the Pauli matrices, i.e., the Lie algebra of $\mathrm{SU}(2)$:

$$
\tau_{x}=i \sigma_{x}=i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \tau_{y}=i \sigma_{y}=i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \tau_{z}=i \sigma_{z}=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Generalized pokes, by arbitrary angles, yield the full local Lie group $\operatorname{SU}(2)$. Maximal parity violation and $\mathrm{SU}(2)$ breaking also follow (see bonus material).

Slides Generate Three Belt Tricks and SU(3)

* Interactions
* Reidemeister

$$
\text { moves } 1
$$

* Reidemeister moves 2
* U(1)
* SU(2)
*SU(3)
* Gell-Mann matrices
* Elementary
bosons
Gravitation
Conclusion
Bonus Material

Slides, or third Reidemeister moves, acting on strand pairs in three-strand structures, can be generalized to the generators of the Lie group SU(3).

Slides rotate the dotted circle by π.

The deformations allow reading off the matrix representations (see next page).
λ_{3}, λ_{9} and λ_{10} are not linearly independent.

Traditionally, λ_{3} and λ_{8} are used.
λ_{8} is the slide prototype.

Slides Generate SU(3)'s Gell-Mann Matrices

Wave Functions
Gauge interactions

* Interactions
* Reidemeister
moves 1
* Reidemeister moves 2
* U(1)
* SU(2)
* SU(3)
* Gell-Mann matrices
* Elementary
bosons
Gravitation
Conclusion
Bonus Material

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& \lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad \lambda_{9}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \lambda_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \lambda_{10}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \\
& \text { and } \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \text {. }
\end{aligned}
$$

Of the ten slide deformations, only the first eight are linearly independent. These eight deformations yield the Gell-Mann matrices.
The eight deformations generate the algebra of $\operatorname{SU}(3)$ - and describe gluons.
These eight generators also yield the relations $\operatorname{tr} \lambda_{n}=0$ and $\operatorname{tr}\left(\lambda_{n} \lambda_{m}\right)=2 \delta_{n m}$.
$\mathrm{SU}(3)$ has three linear independent $\mathrm{SU}(2)$ subgroups - one in each row. Generalized slides, by arbitrary angles, yield the full Lie group SU(3). (Publication link.)

Elementary Bosons Follow

Quantum of Action
Wave Functions

Gauge interactions

* Interactions
* Reidemeister moves 1
* Reidemeister moves 2
* U(1)
* SU(2)
* SU(3)
* Gell-Mann matrices
\& Elementary
bosons
Gravitation
Conclusion
Bonus Material

Elementary bosons are simple configurations of 1,2 or 3 strands that propagate:
Real bosons: Virtual bosons:

'Elementary' means 1,2 or 3 strands.
'Boson’ means unlocalizable tangle.

The gauge bosons tangles reproduce all quantum numbers.

No additional
gauge bosons
are possible.
No other explanation of the gauge spectrum exists. (Pedagogical link.)

A Planck-Scale Model of Almost Everything

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
\& Everything strands

* Gravitation
* Black hole rotation

Conclusion
Bonus Material

Curved vacuum - an irregular strand aggregate

A particle - a tangle of strands

Observation after time average of crossing switches: a horizon, i.e., a thin spherical cloud, with mass, moment of inertia, entropy, and temperature.

A black hole horizon - a weave of strands

Black hole horizon in the strand conjecture:
 The effective number n of possible microstates per smallest area:

$$
n=2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots=\mathrm{e}=2.71828 \ldots
$$

yields an entropy value S that depends on the area A : (Schiller 2009, 2019, 2023)

$$
\frac{S}{k}=\frac{A}{4 \hbar G / c^{3}}-\mathcal{O}\left(\ln \frac{A}{4 \hbar G / c^{3}}\right)
$$

The fundamental principle implies black hole entropy, energy, temperature and evaporation: strands detach. Strands imply general relativity.
Strands imply force $F \leqslant c^{4} / 4 G$, power $P \leqslant c^{5} / 4 G$, mass/length $m / l \leqslant c^{2} / 4 G$, etc. Strands again imply pure general relativity.
Thus, no singularities, negative energy regions, wormholes, black hole hair, torsion, time-like loops, running of G, or new quantum gravity effects.

Black Holes Can Rotate

Quantum of Action
Wave Functions
Gauge interactions
Gravitation

* Everything strands
* Gravitation
* Black hole rotation

Conclusion
Bonus Material

Strands are not observable, only crossing switches are.
Black holes have a finite moment of inertia; mass is distributed over the horizon.

The Main Results

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion

* Results
* Exp. predictions
* Math Challenges

Bonus Material

Only fluctuating tangles of strands explain wave functions.
Only fluctuating tangles of strands explain elementary particles - and their quantum numbers and properties - from tangle classification.

Only fluctuating tangles of strands explain the gauge groups - and all the interaction properties - using the Reidemeister moves.

The fascinating aspect is due to the simplicity of the fundamental principle and to the uniqueness of the explanations:

- The fundamental principle implies observed particle physics only.
- The fundamental principle implies observed general relativity only.
- Only the fundamental principle provides these explanations.
- There is no way to modify or to generalize the fundamental principle or the tangle model - and their predictions.

Predictions - Beyond The Standard Model

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion

* Results
\& Exp. predictions
* Math Challenges

Bonus Material

- Planck length and Planck time are the smallest measurable intervals. Space is neither continuous nor discrete. No new quantum gravity effects.
- 3 dimensions. No supersymmetry. No non-commutative space.
- Planck momentum and energy are the highest measurable values for elementary particles. $c^{4} / 4 G$ and $c^{5} / 4 G$ are maximum force and luminosity. Maximum values for probability densities, electric fields, magnetic fields, strong and weak fields exist. No trans-Planckian effects.
- 3 gauge interactions. Only. They are fundamental. No GUT.
- 3 generations. No new particles. No unknown elementary dark matter. No axions, no WIMPS, no sterile neutrinos, no monopoles, etc.
- No measurable deviations from the standard model. Only known Feynman diagrams. Scattering amplitudes, running, $g-2$, and electric dipole moments are as predicted. No proton decay. No baryon number violation. CPT holds. Dirac neutrinos with normal mass order.
- No physics beyond the standard model with massive Dirac neutrinos. And
- Masses, mixing angles and coupling constants can be calculated.

Mathematical Outlook And Challenges

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion

* Results
* Exp. predictions
\& Math Challenges
Bonus Material

Prove, clarify or disprove:

- No visualization of $\operatorname{SU}(2)$ or $\operatorname{SU}(3)$ without tethers is possible in 3 dimensions.
- No visualization of $\mathrm{SU}(\mathrm{n})$ with strands (or without strands) for $\mathrm{n}>3$ is possible in 3 dimensions. (This has profound consequences for physics.)
- The rational tangle classification is mathematically complete and leaves no room for additional elementary fermions or bosons.
- The rational tangle classification is mathematically complete and leaves no room for additional defects in space that are neither fermions nor bosons.

Determine:

- How does the probability of belt-trick-like rotation for a tethered ball depend on the chirality and size of the tethered structure and on the number of ropes?
Use ideas from hydrodynamics of viscous liquids.
- Use the result to estimate neutrino masses. Ideally, before they are measured.
- Calculate the three gauge coupling constants from the average tangle shape.

Earn prizes for specific math problems on knot theory:

- See www.motionmountain.net/charge-mass.html

The Universe

Nature is a wobbly criss-crossing strand woven into the night sky. The universe plays cat's cradle.

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

* The universe

* Path integrals
* Dirac's equation
* Quark generations
* Lepton generations
* Electrons and positrons
* SM Lagrangian 1
* SM Lagrangian 2
* References 1
* References 2

Tangles Also Yield Path Integrals

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material
: The universe
\& Path integrals
\& Dirac's equation
* Quark generations
* Lepton generations
* Electrons and
positrons
* SM Lagrangian 1
* SM Lagrangian 2
\& References 1
* References 2

The strand tangle model for a fermion in the path-integral formulation

Tight tangle cores of strands of vanishing radius are Feynman's point particles. Their phase (arrow / flag) rotates when advancing. Their crossing (midpoint) density yields Dirac's equation. (Pedagogical link.)

Spin 1/2, the Belt Trick and Dirac's Equation

* Path integrals
\& Dirac's equation
* Quark generations
* Lepton generations
* Electrons and positrons
* SM Lagrangian 1
* SM Lagrangian 2
* References 1
* References 2

Free particles (spinors) are (blurred) spinning tangle cores.
Dirac's belt trick allows continuous (tethered) rotation (see film @ by Antonio Martos). Spin is rotation; spin value is due to strand number and tangle details. Antiparticles are mirror tangles with opposite belt trick.
Particle momentum and energy are core wavelength and rotation frequency.
Quantum phase is $1 / 2$ of the orientation angle of the tangle core.
The wave function is the time-averaged ("blurred") tangle crossing density. Maximum speed c and minimum action \hbar hold.

Strands imply the free Dirac equation $i \hbar \gamma^{\mu} \partial_{\mu} \psi=m c \psi$ and its propagator. (Battey-Pratt and Racey 1980) Dirac's equation is due to Dirac's trick.
The principle of least action ("cosmic laziness") is the principle of fewest crossing switches.

The origin of the 3 quark generations
6 Quarks
Wave Functions
Gauge interactions

Gravitation
Conclusion
Bonus Material

* The universe
* Path integrals
* Dirac's equation
* Quark generations
* Lepton generations
* Electrons and positrons
* SM Lagrangian 1
* SM Lagrangian 2
* References 1
* References 2

Quarks are infinite families of tangles.

Each family is due to Higgs boson interactions.

The three dimensions of space imply three quark generations.

Electrons and Positrons

Quantum of Action

Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

* The universe
* Path integrals
* Dirac's equation
* Quark generations
* Lepton generations

* Electrons and
 positrons

* SM Lagrangian 1
* SM Lagrangian 2
* References 1
* References 2

All effects
 of quantum electrodynamics arise.
 This includes
 the running of masses and of charges.

Wave Functions

Gauge interactions
Gravitation
Conclusion
Bonus Material

* The universe
* Path integrals
* Dirac's equation
* Quark generations
* Lepton generations
* Electrons and
positrons
* SM Lagrangian 1
*SM Lagrangian 2
* References 1
* References 2
in the tangle model.
The rational 3d particle tangles limit the possible interaction vertices.

Due to the tangle topology, only triple or quadruple vertices arise, but no fourfold fermion vertices.

Renormalizability is thus automatic
Tangle model
$\xrightarrow[\text { time average }]{ }$

time average

SM 1

SM 2

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

* The universe
* Path integrals
* Dirac's equation
* Quark generations
* Lepton generations
* Electrons and positrons
* SM Lagrangian 1

*SM Lagrangian 2

* References 1
* References 2

The rational 3d particle tangles also yield Higgs self-interactions.

No vertex of the standard model is missing.

Due to the tangle topologies, no additional vertices arise.

The full standard model Lagrangian arises.

Web Pages \& References on Particle Physics

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

* The universe
* Path integrals
* Dirac's equation
* Quark generations
* Lepton generations
* Electrons and positrons
* SM Lagrangian 1
* SM Lagrangian 2
* References 1
* References 2
C. Schiller, On the relation between the three Reidemeister moves and the three gauge groups, Int. J. of Geometric Methods in Modern Physics 21 (2024) 2450057. Link.
E.P. Battey-Pratt and T.J. Racey, Geometric model for fundamental particles, International Journal of Theoretical Physics 19 (1980) 437. Link.
C. Schiller, Testing a conjecture on quantum chromodynamics, International Journal of Geometric Methods in Modern Physics, 20 (2023) 2350095. Link.
C. Schiller, Testing a conjecture on quantum electrodynamics, Journal of Geometry and Physics 178 (2022) 104551. Link.
C. Schiller, Testing a conjecture on the origin of the standard model, European Physical Journal Plus 136 (2021) 79. Link.
C. Schiller, A conjecture on deducing general relativity and the standard model with its fundamental constants from rational tangles of strands, Physics of Particles and Nuclei 50 (2019) 259-299. Link.

Preprint: C. Schiller, Testing a model for emergent spinor wave functions explaining gauge interactions and elementary particles. Pedagogical link.
Additional preprints at www.researchgate.net/profile/Christoph-Schiller-2/research.
Other pedagogical material at www.motionmountain.net/tangles.
Animations at www.motionmountain.net/videos.html\#strands.
Experimental and theoretical predictions at www.motionmountain.net/predictions.

References on Gravity and Planck Limits

Quantum of Action
Wave Functions
Gauge interactions
Gravitation
Conclusion
Bonus Material

* The universe
* Path integrals
* Dirac's equation
* Quark generations
* Lepton generations
* Electrons and positrons
* SM Lagrangian 1
* SM Lagrangian 2
* References 1
\& References 2
U. Hohm and C. Schiller, Testing the Minimum System Entropy and the Quantum of Entropy, Entropy 25 (2023) 1511. Link.
C. Schiller, Testing a microscopic model for black holes deduced from maximum force, chapter in the book „A Guide to Black Holes", Nova Science Publishers (January 2023).

Link.

C. Schiller, Testing a conjecture on the origin of space, gravity and mass, Indian Journal of Physics 96 (2022) 3047-3064. Link.
A. Kenath, C. Schiller and C. Sivaram, From maximum force to the field equations of general relativity - and implications, International Journal of Modern Physics D 31 (2022) 2242019. (Honourable mention in 2022 from the Gravity Research Foundation.) Link.
C. Schiller, From maximum force to physics in 9 lines and towards relativistic quantum gravity, Zeitschrift für Naturforschung A 78 (2022) 145-159. Link.
C. Schiller, From maximum force via the hoop conjecture to inverse square gravity, Gravitation and Cosmology 28 (2022) 305-307. Link.
C. Schiller, Tests for maximum force and maximum power, Physical Review D 104 (2021) 124079. Link.
C. Schiller, Comment on "Maximum force and cosmic censorship", Physical Review D 104 (2021) 068501. Link.
C. Schiller, Simple derivation of minimum length, minimum dipole moment and lack of space-time continuity, International Journal of Theoretical Physics 45 (2006) 213-227.

Link.

C. Schiller, General relativity and cosmology derived from principle of maximum power or force, International Journal of Theoretical Physics 44 (2005) 1629-1647. Link.

